Cordial, 1-near mean cordial \& super mean labeling of tensor product of paths
نویسندگان
چکیده
منابع مشابه
Further results on total mean cordial labeling of graphs
A graph G = (V,E) with p vertices and q edges is said to be a total mean cordial graph if there exists a function f : V (G) → {0, 1, 2} such that f(xy) = [(f(x)+f(y))/2] where x, y ∈ V (G), xy ∈ E(G), and the total number of 0, 1 and 2 are balanced. That is |evf (i) − evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). In thi...
متن کاملSome Results on Total Mean Cordial Labeling of Graphs
A graph G = (V,E) with p vertices and q edges is said to be a Total Mean Cordial graph if there exists a function f : V (G) → {0, 1, 2} such that for each edge xy assign the label ⌈ f(x)+f(y) 2 ⌉ where x, y ∈ V (G), and the total number of 0, 1 and 2 are balanced. That is |evf (i)− evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0,...
متن کاملfurther results on total mean cordial labeling of graphs
a graph g = (v,e) with p vertices and q edges is said to be a total mean cordial graph if there exists a function f : v (g) → {0, 1, 2} such that f(xy) = [(f(x)+f(y))/2] where x, y ∈ v (g), xy ∈ e(g), and the total number of 0, 1 and 2 are balanced. that is |evf (i) − evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). in thi...
متن کاملProduct Cordial Labeling for Some New Graphs
Received: December 16, 2010 Accepted: December 31, 2010 doi:10.5539/jmr.v3n2p206 Abstract In this paper we investigate product cordial labeling for some new graphs. We prove that the friendship graph, cycle with one chord (except when n is even and the chord joining the vertices at diameter distance), cycle with twin chords (except when n is even and one of the chord joining the vertices at dia...
متن کاملRemainder Cordial Labeling of Graphs
In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)rightarrow {1,2,...,p}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)geq f(v)$ or $f(v)geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $left| e_{...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Malaya Journal of Matematik
سال: 2020
ISSN: 2319-3786,2321-5666
DOI: 10.26637/mjm0s20/0130